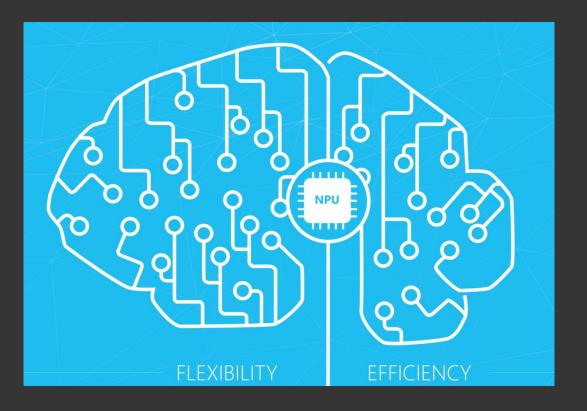
Global-Scale FPGA-Accelerated Deep Learning Inference with Microsoft's Project Brainwave

Gabriel Weisz Bing Engineering Microsoft



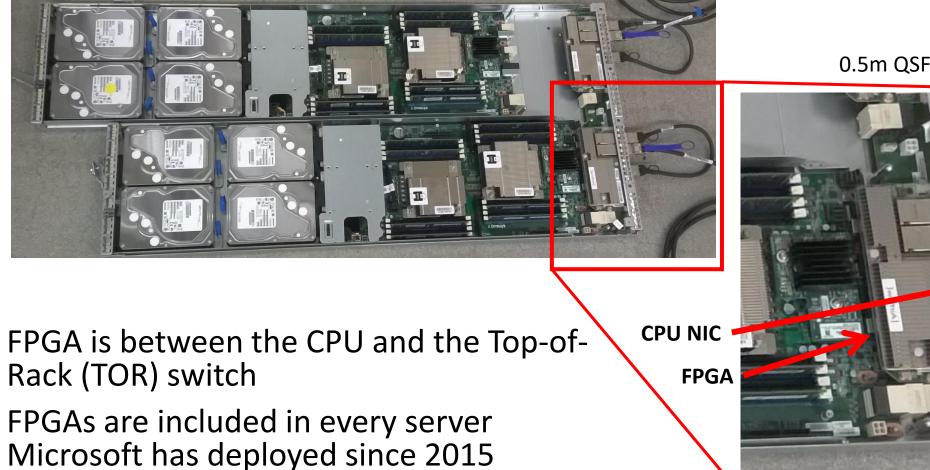
Over 1 Million Catapult FPGAs in Our Data Centers

Machine Learning

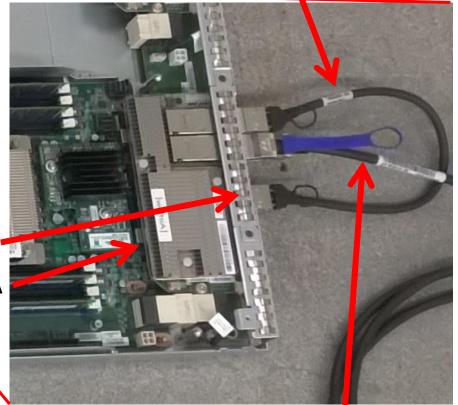
Accelerated Networking

Catapult FPGA Servers

Microsoft

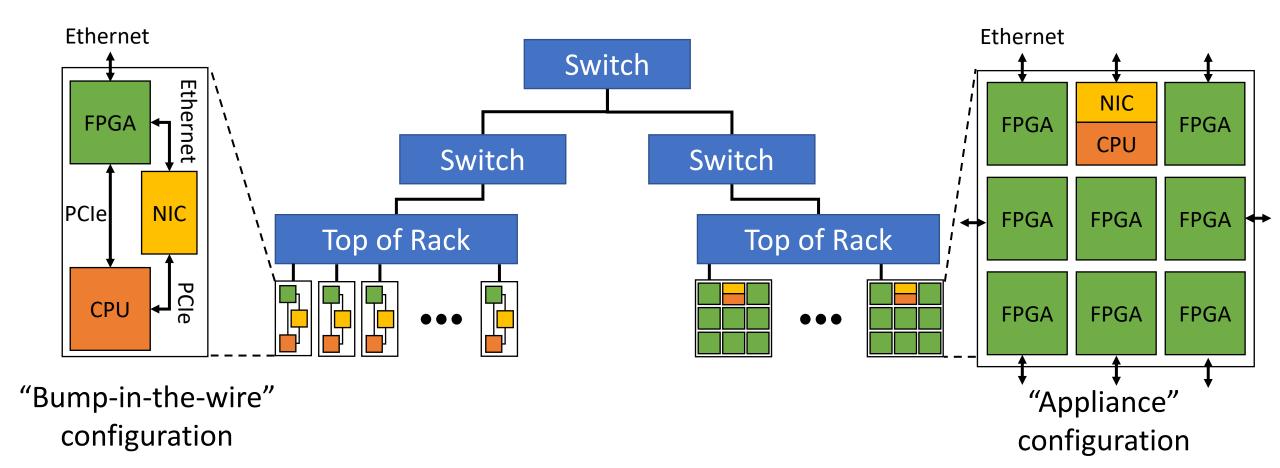


0.5m QSFP cable from NIC to FPGA

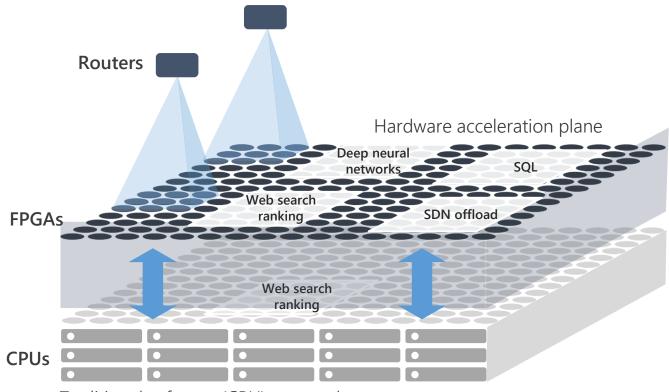


~3m QSFP cable from FPGA to TOR [Slide courtesy Andrew Putnam]

Catapult in the Data Center



Catapult + Software = Hardware Microservices



Traditional software (CPU) server plane

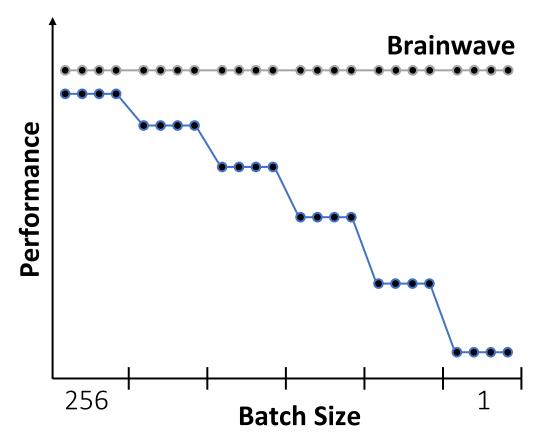
- Interconnected FPGAs form a separate plane of computation
- FPGAs are used and managed independently from the CPU
- Applications are mapped across multiple FPGAs and CPUs

Hardware Microservices for Real-Time Al

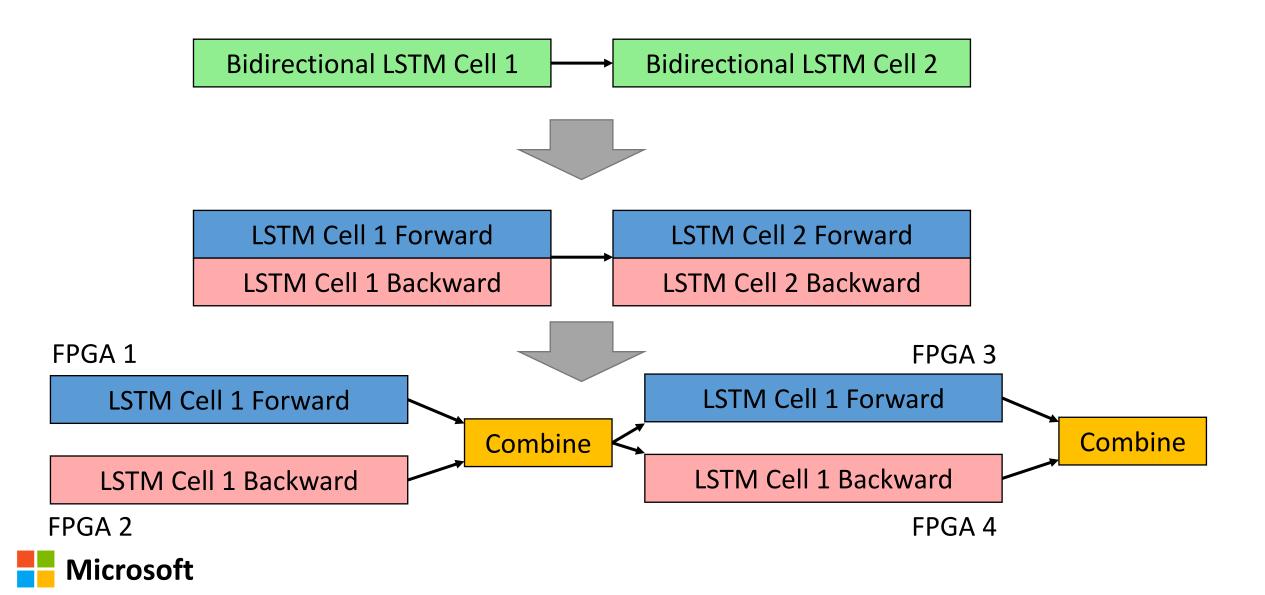
Real-Time AI = low latency without batching

Brainwave maps neural network models to multiple networkattached FPGAs

Weights are pinned to registers for low latency



Mapping a Model Across FPGAs



Bing Intelligent Search Powered By Brainwave

Bing launches new intelligent search features, powered by AI

Today we announced new Intelligent Search features for Bing, powered by AI, to give you answers faster, give you more comprehensive and complete information, and enable you to interact more naturally with your search engine.

Intelligent answers:

Intelligent answers leverage the latest state of the art machine reading comprehension, backed by Project Brainwave running on Intel's FPGAs, to read and analyze billions of documents to understand the web and help you more quickly and confidently get the answers you need.

Bing now uses deep neural networks to validate answers by aggregating across multiple reputable sources, rather than just one, so you can feel more confident about the answer you're getting.

All	Images	Videos	Maps	News	Shop		My save
281,00	0 Results	Any time 👻					
192	28						
Conso	olidated from r	nultiple source	S				
In 19	28, the Wo	men's Colle	ge was rer				
In 19 Unive	28, the Wo ersity" in ho	men's Colle nor of Pemb	ge was rer broke Colle	ege at the	University	of Car	nbridge
In 19 Unive in En	2 8, the Wo ersity" in ho gland. Roge	men's Colle	ge was rer broke Colle one of the	ege at the	University	of Car	nbridge

FPGA-Accelerated model is **much** faster even though it is more complicated

/\					
		CPU-only	Brainwave-accelerated	Improvement	
Model details		GRU 128x200 (x2) + W2Vec	LSTM 500x200 (x8) + W2Vec	Brainwave-accelerated	
End-to-end latency per Batch 1 request at 95%		9 ms	0.850 ms	model is > 10X larger and > 10X lower latency	
		Bir			
		CPU-only	Brainwave-accelerated	Improvement	
Model details		1D CNN + W2Vec (RNNs removed)	1D CNN + W2Vec + GRU 500x500 (x4)	Brainwave-accelerated	
End-to-end latency per Batch 1 request at 95%		15 ms	5 ms	- model is > 10X larger and 3X lower latency	

CPU vs Stratix V performance on production models

Brainwave Components

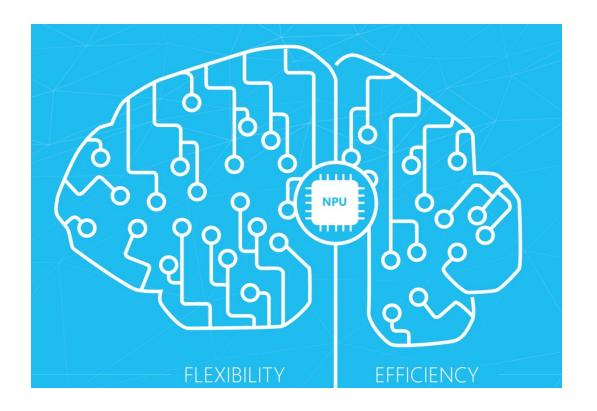
FPGA-based overlay ("NPU")

- Highly parameterized
- Supports multiple FPGA device generations
- Run-time programmable

Enterprise-grade software stack

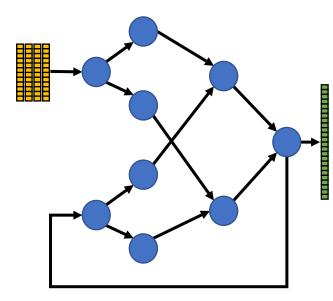
- FPGA management
- Orchestration of computations
- Model compiler

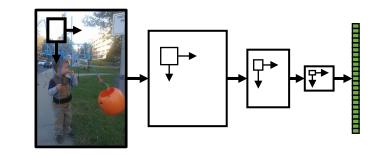
icrosoft

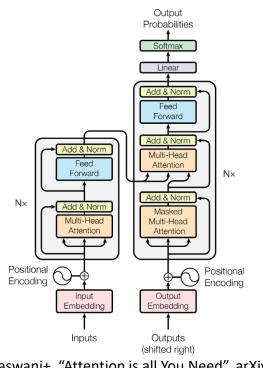


This talk focuses on the overlay

Deep Learning Network Topologies







[Vaswani+, "Attention is all You Need", arXiv]

Recurrent Networks

Convolutional

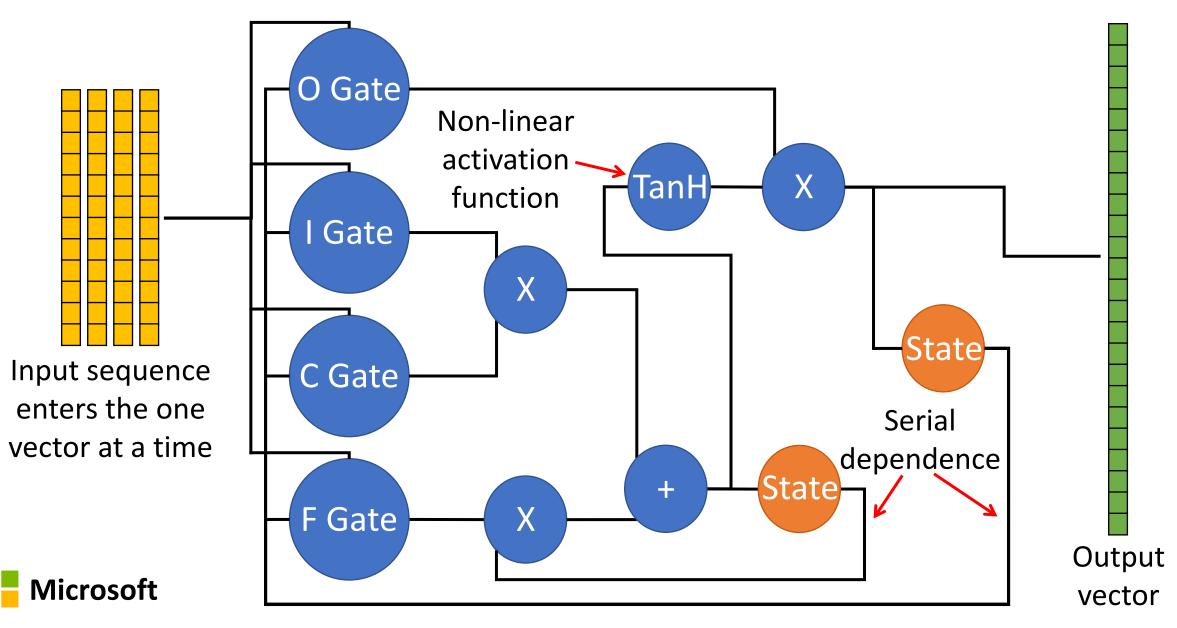
Networks

Transformer Networks

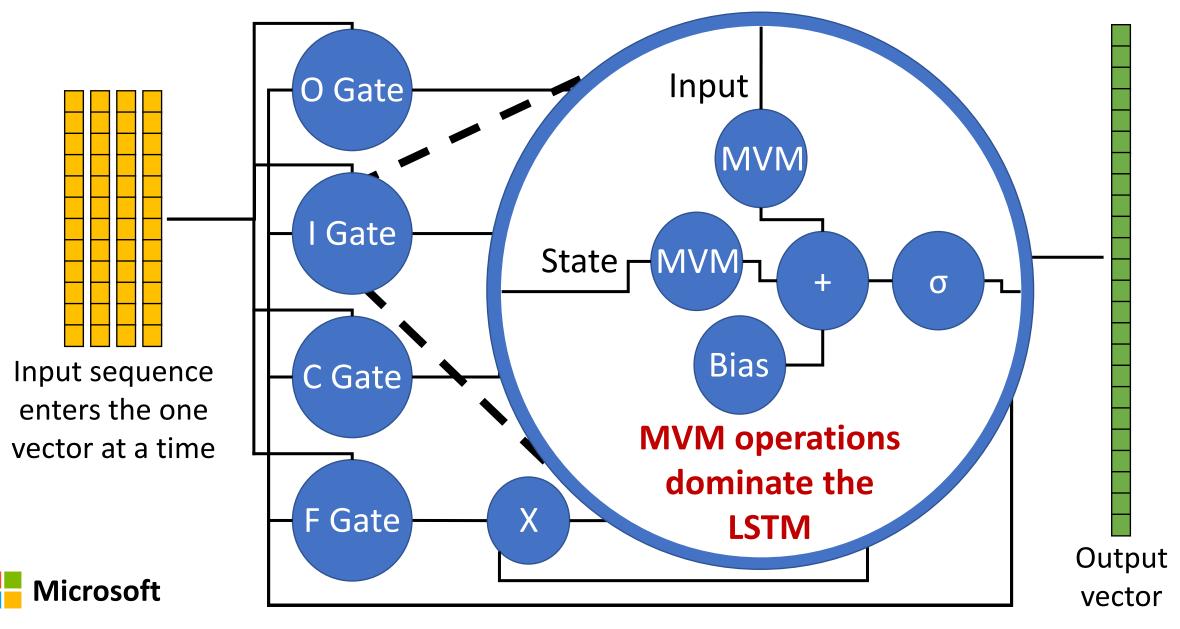
What computations do we need to support?

Microsoft

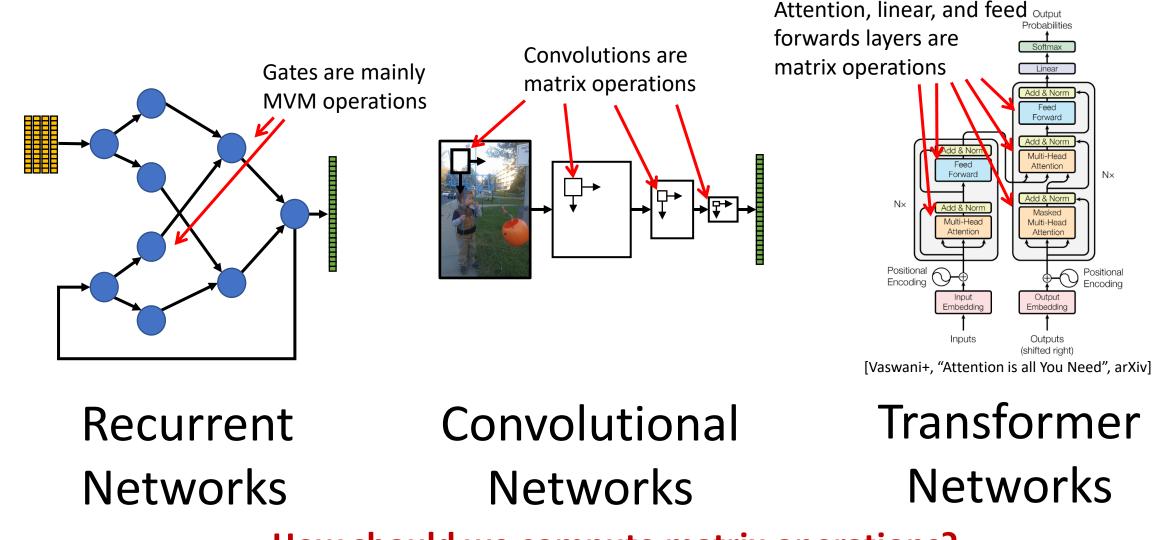
Example RNN: Long Short-Term Memory (LSTM)



Example RNN: Long-Short Term Memory (LSTM)



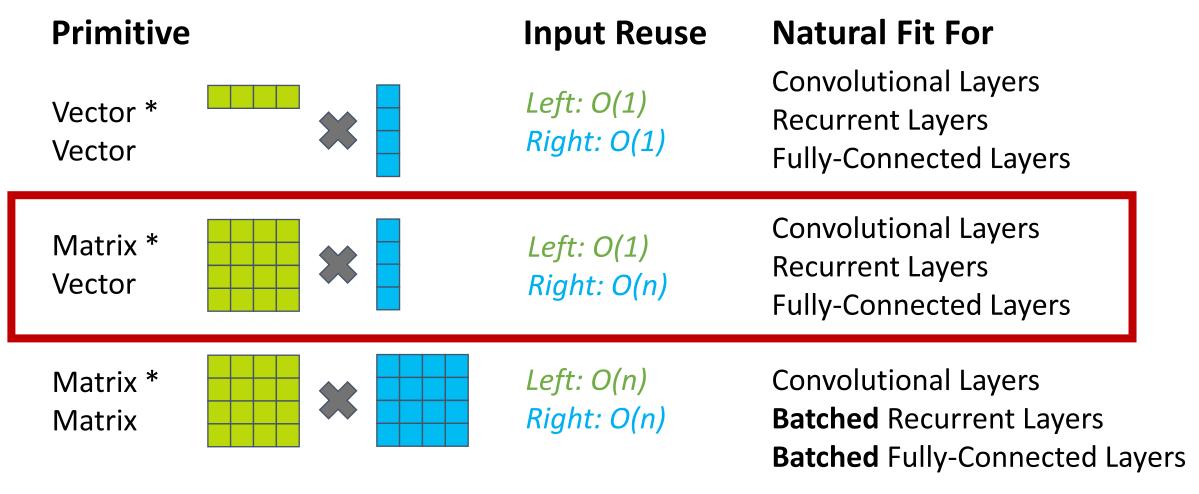
(Almost) Everything is a Matrix Operation



How should we compute matrix operations?

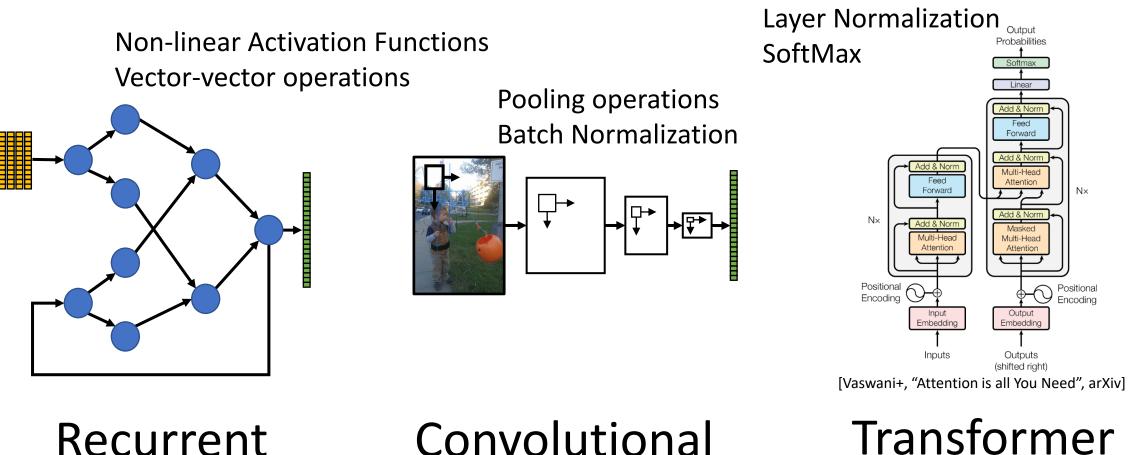
Microsoft

Primitives for Matrix Operations



Brainwave uses Matrix-Vector Multiply

What Else Has to Run on the FPGA?



Networks

Convolutional

Networks

Transformer Networks

Neural networks are not just matrix multiply

licrosoft

Brainwave Overlay Design Principles

Objectives

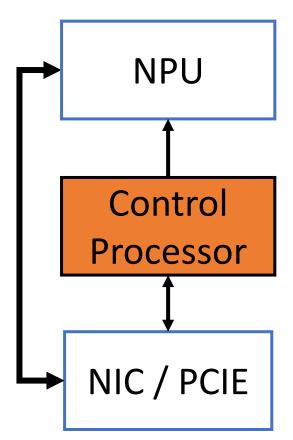
- Fast inferencing without batching
- Simple programmability with a single thread of control

Balance NPU complexity, instruction granularity, and flexibility

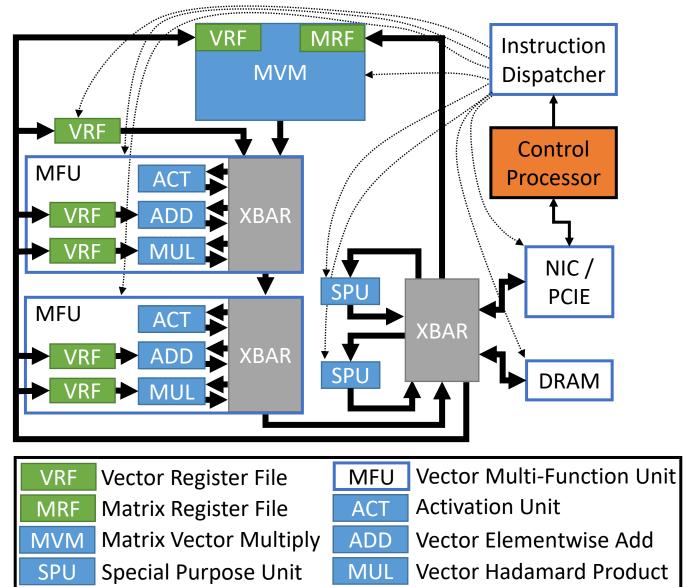
- All instructions operate on vectors of some native dimension
- Compute model is MVM and vector operations
- Neural networks decomposed into these operations

Instruction Chaining

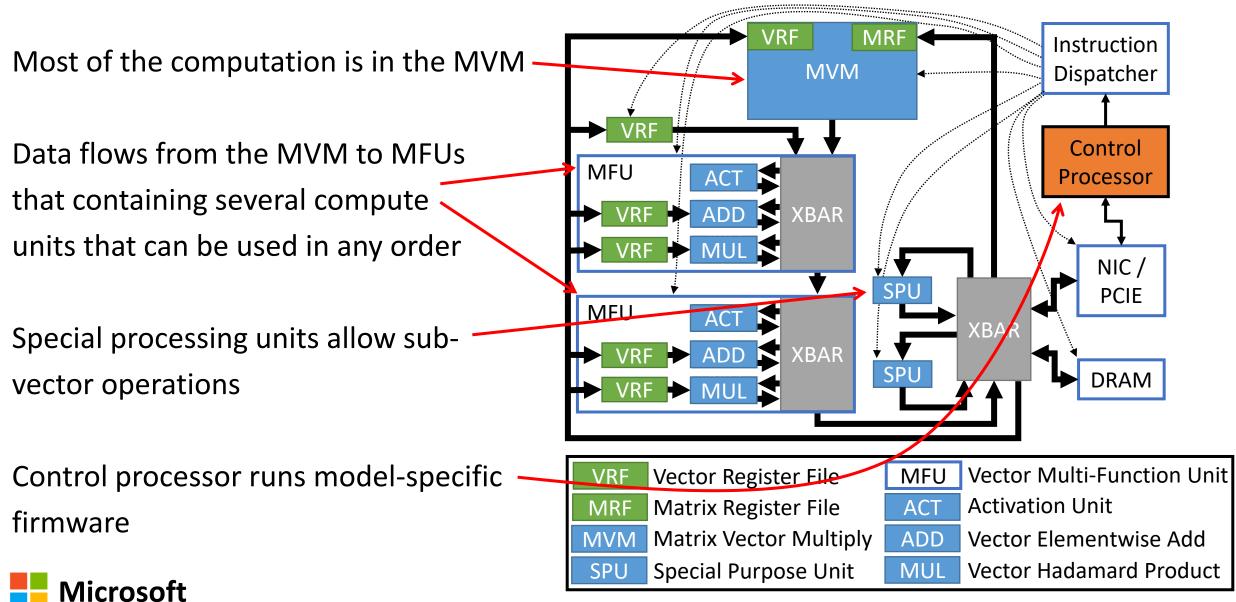
- Optimizes for matrix operation followed by vector operations
- Reduces the need for dependency analysis and multi-ported register files
- Allows a compact instruction encoding



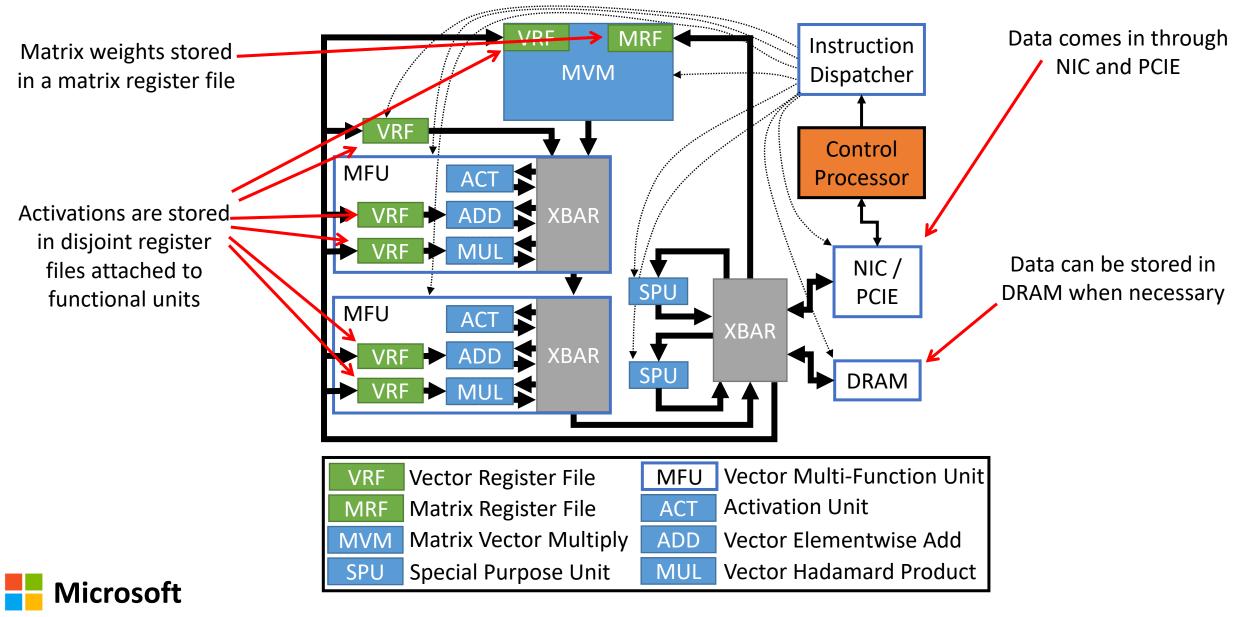
Brainwave Overlay Microarchitecture



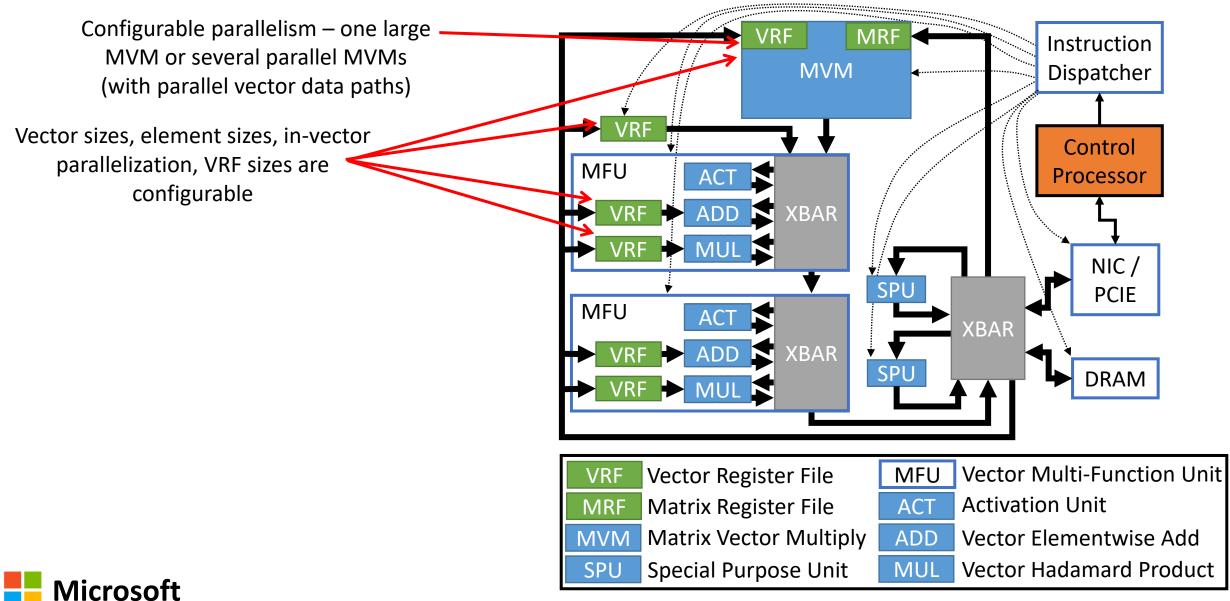
Brainwave Overlay Microarchitecture



Brainwave Data Management

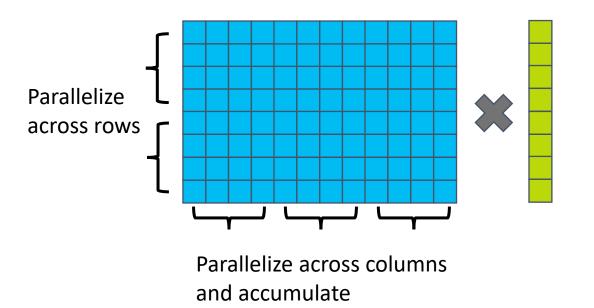


Overlay Specialization



Optimizing for Different MVM Operations

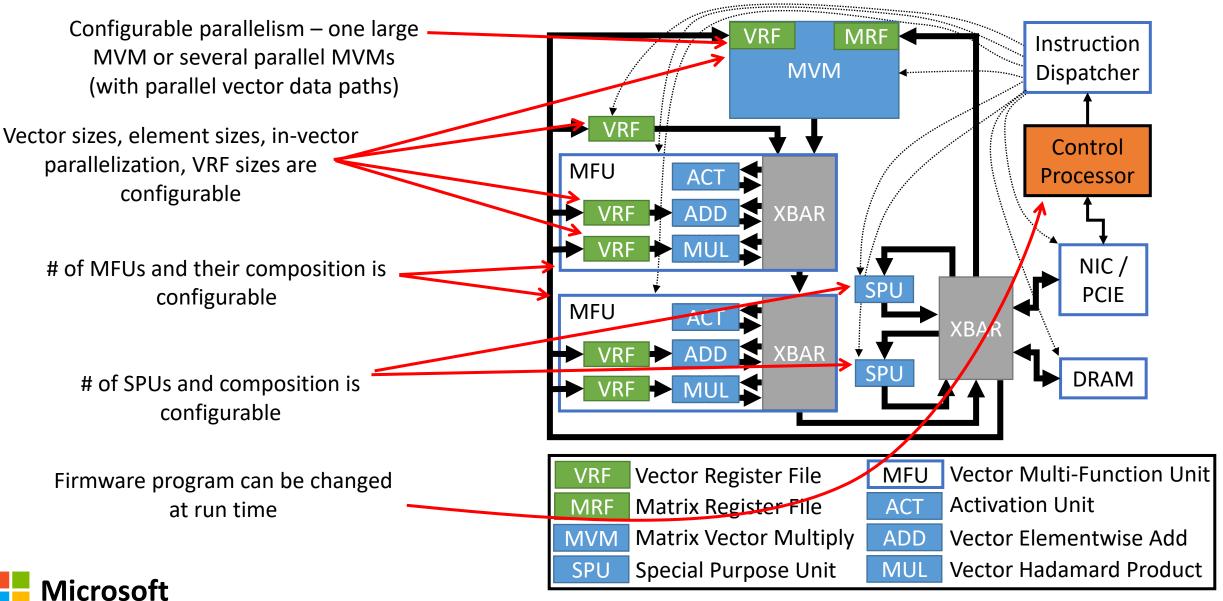
Recurrent network with large matrices



Convolutional network with many small filter operations

Parallelize across patches

Overlay Specialization

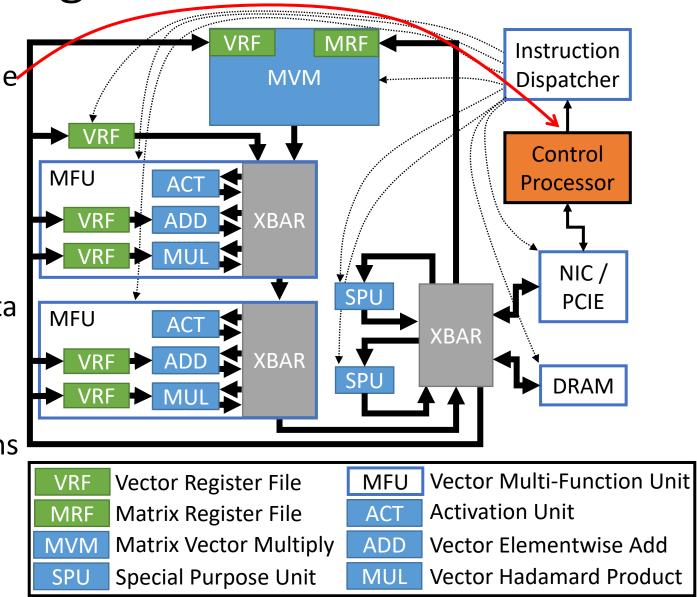


Brainwave Firmware Programs

Firmware is a C program that runs on the control processor and makes the accelerator execute each particular neural network

Firmware manages control flow and data movements

Firmware maps the network's operations to chains of operations that the accelerator supports



DNN Operators and Brainwave

Operations common in Deep Learning Networks

LSTM	Scale
GRU	Max Pool
Convolution	Batch Norm
SoftMax	Sigmoid
Bias	TanH

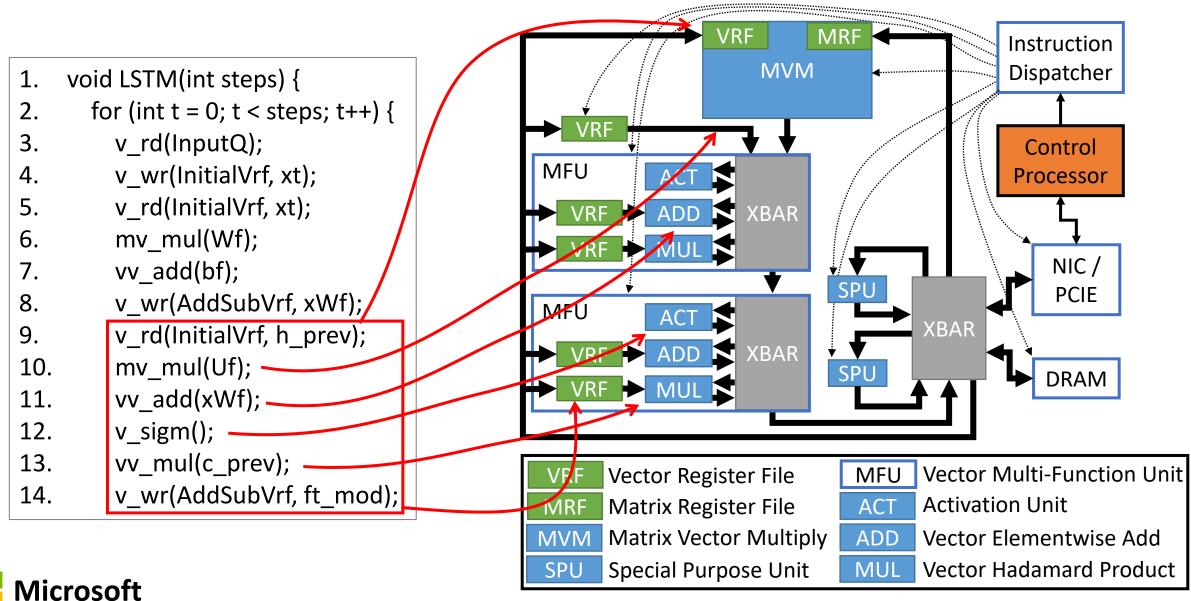
Operations supported by the Brainwave accelerator MVM Vector add/sub/max Hadamard product Sigmoid TanH Square root Inverse

LSTM Sketch in 29 Lines of Firmware Code

Loop over sequence	1. 2.	<pre>void LSTM(int steps) { for (int t = 0; t < steps; t++) {</pre>	15. 16.	v_rd(InitialVrf, h_prev); mv_mul(Uc);	
Read Input Process	3. 4. 5.	v_rd(InputQ); v_wr(InitialVrf, xt); v_rd(InitialVrf, xt);	17. 18. 19.	vv_add(xWc); v_tanh(); vv_mul(it);	Process Hidden State
Current Input	6. 7. 8.	mv_mul(Wf); vv_add(bf); v_wr(AddSubVrf, xWf);	20. 21. 22.	<pre>vv_add(ft_mod); v_wr(MultiplyVrf, c_prev); v_wr(InitialVrf, ct);</pre>	
Process Hidden –	9. 10. 11. 12.	v_rd(InitialVrf, h_prev); mv_mul(Uf); vv_add(xWf); v_sigm();	23. 24. 25. 26.	v_rd(InitialVrf, ct); v_tanh(); vv_mul(ot); v wr(InitialVrf, h prev);	Compute Next Hidden
State	12. 13. 14.	v_sign(), vv_mul(c_prev); v_wr(AddSubVrf, ft_mod);	20. 27. 28. 29.	} v_wr(OutputQ);	State and Output

Firmware includes instruction chains that direct each functional unit

Mapping LSTM Chains to the Accelerator



Convolutional Networks

- Convolutions:
 - Convolutions slide a window over the image
 - The set of input data at each location is called a "patch"
 - The convolution computes a dot product between each patch and a set of filters.
 - The output of the convolution operation is a 2D array of vectors each containing one element per filter
- Batch normalization reduces the range of the activation values, reducing covariate shift
- Pooling operations reduce the size of the feature maps

ResNet-152: A Convolutional Neural Network

Input: 224 x 224 image _____ 50k input vectors of 3 elements

Intermediate feature maps range from 112X112 vectors of depth 64 to 7X7 vectors of depth 2048 Won the 2015 ILSVRC challenge and

achieved human-level accuracy

151 convolutional layers

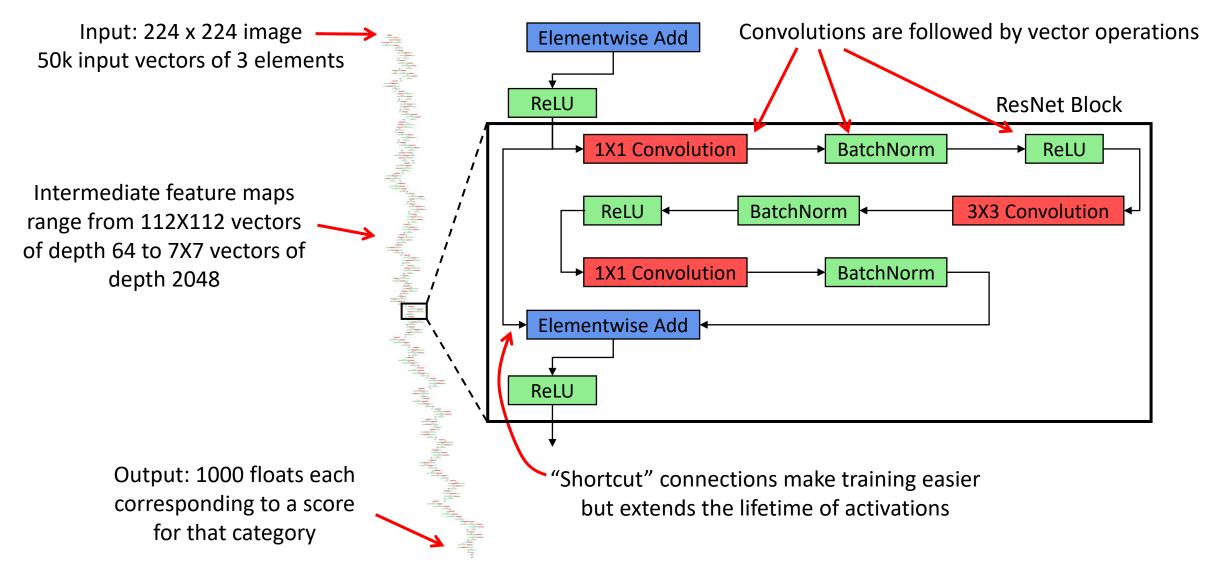
60 million model parameters

11 billion FLOPS

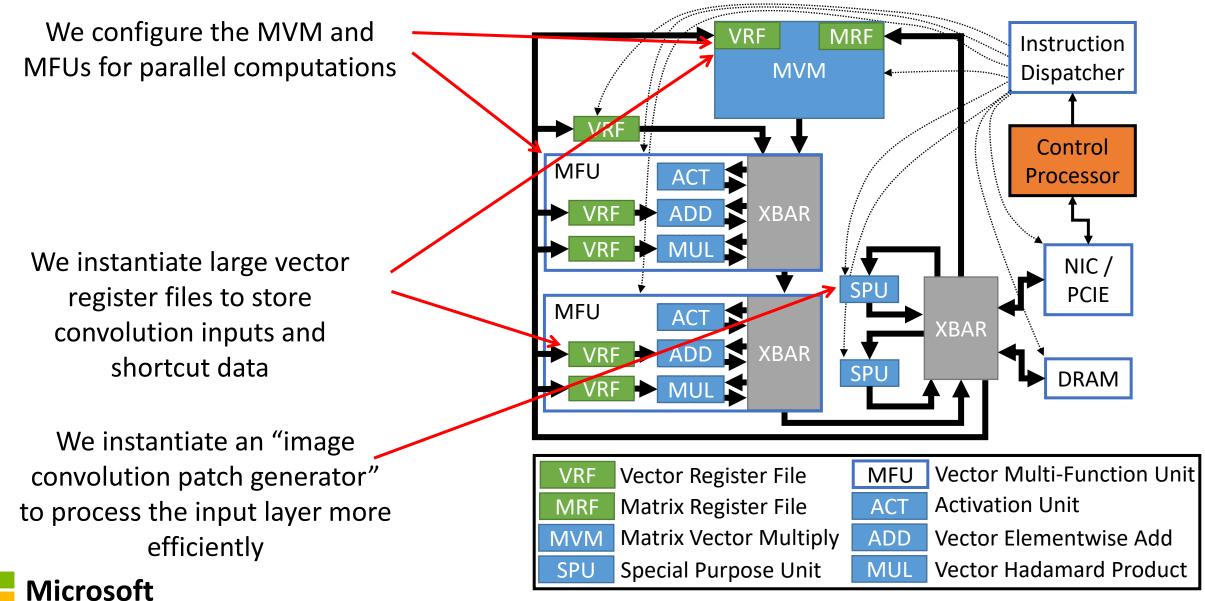
Output: 1000 floats each corresponding to a score for that category

ResNet-152 is procedurally generated using blocks of network layers that repeat

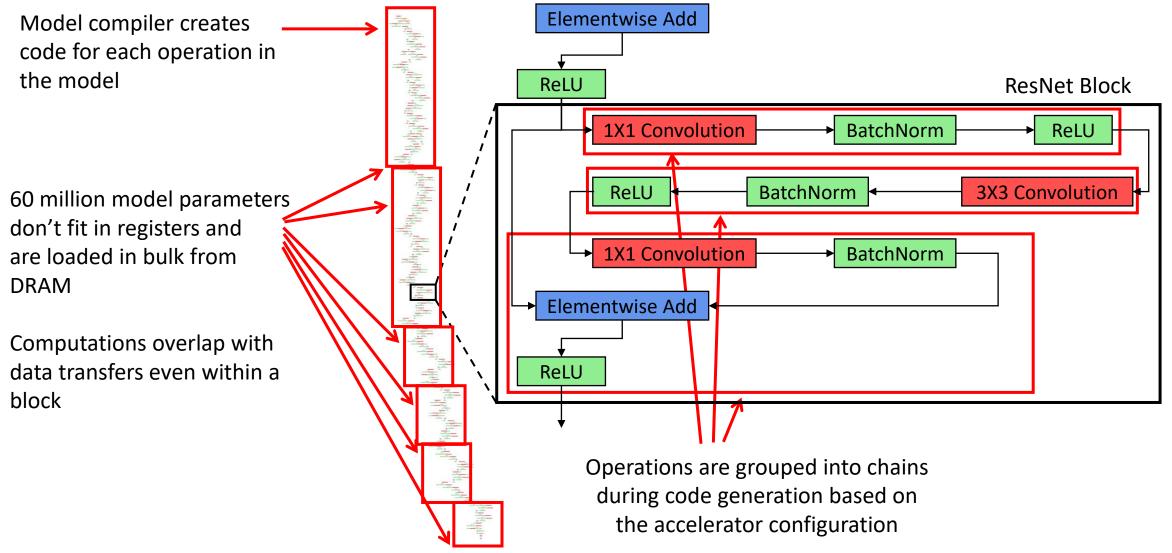
"Res" = "Residual" Learning with Shortcuts



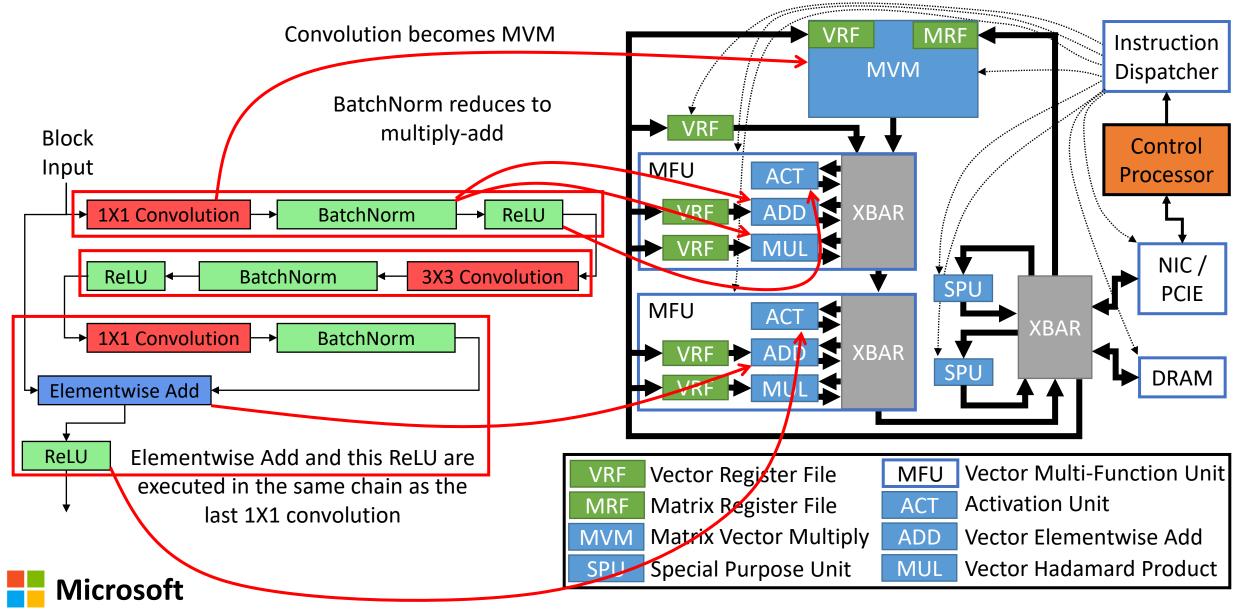
Specializing Brainwave for ResNet-152



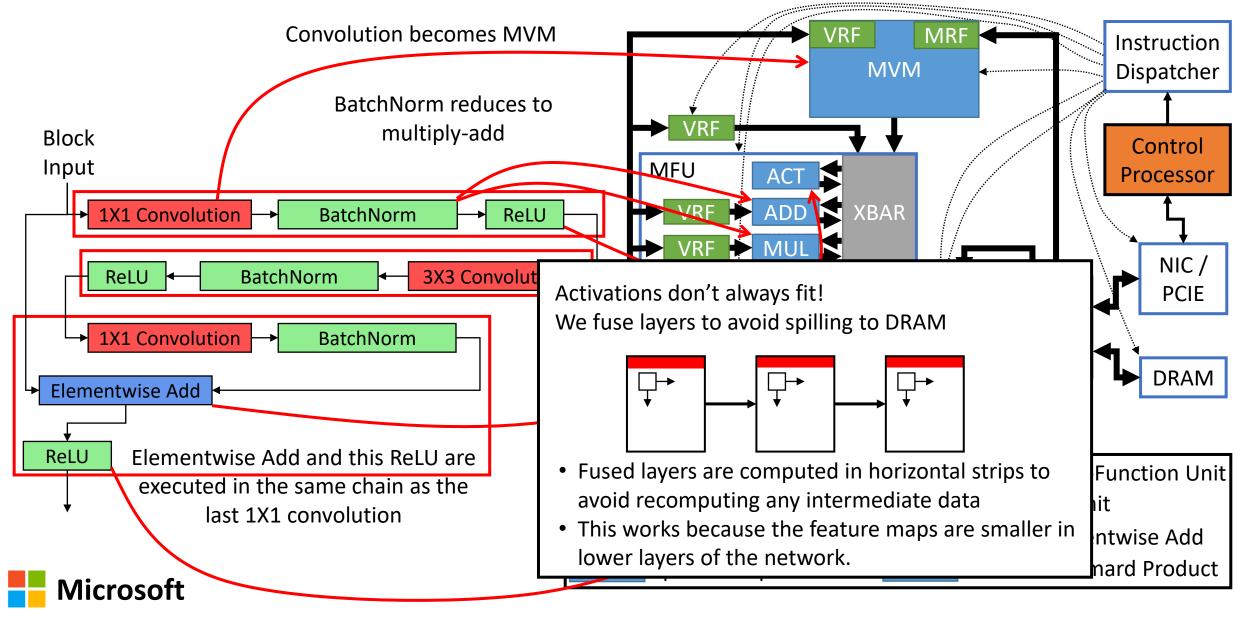
Model Porting and Firmware Generation



Mapping ResNet-152 to Brainwave



Mapping ResNet-152 to Brainwave



ResNet-152 and ResNet-50 Performance

- All convolution layers run on the FPGA
- Experiments use a batch size of 1
- Classifier runs on host computer
- Results are for the layers running on the FPGA and include data transfers
- Results on Arria 10 GX 1150 running at 300 MHZ

ResNet variant	ResNet-152	ResNet-50		
Convolution Layers	151	49		
Inference Latency (ms)	4	1.65		
Top-1 Accuracy (%)	75.4	73.3		
Reference Top-1 (%)*	77	75.3		
Top-5 Accuracy (%)	92.4	91.1		
Reference Top-5 (%)*	93.3	92.2		

* [github.com/KaimingHe/deep-residual-networks]

ResNet-152 reference results:

[Ma+ ISCAS 17]: 72 ms on the Arria 10 GX 1150 [Aziz+ HPCA 2019]: 35 ms on the Virtex-7 485T ResNet-50 reference results: [Chen+ FPGA 2019]: 8 ms on VU9P Our experiments: 25% faster than an NVIDIA P40

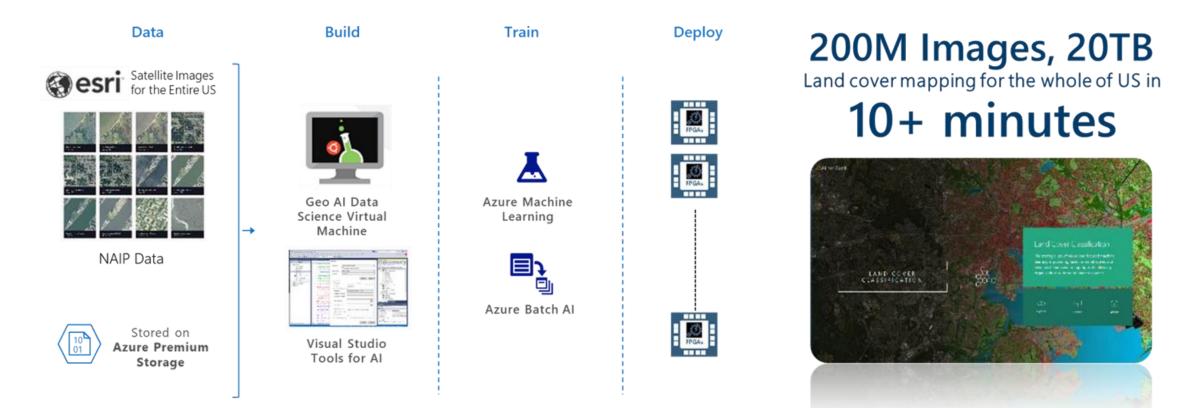
FPGA-Accelerated CNNs in Azure

5 well-known convolutional neural networks

- ResNet-152
- ResNet-50
- DenseNet-121
- VGG-16
- SSD-VGG

The system includes an SDK, web-based GUI, and tutorials [https://aka.ms/aml-real-time-ai]

Azure-Hosted ResNet-50 Based Land Classification



Created a national land cover map in about 10 minutes using \$42 of compute time

[https://blogs.microsoft.com/green/2018/05/23/

achievement-unlocked-nearly-200-million-images-into-a-national-land-cover-map-in-about-10-minutes/]

Azure-Hosted ResNet-50 for Particle Physics

FPGA-accelerated machine learning inference as a service for particle physics computing

Javier Duarte · Philip Harris · Scott Hauck · Burt Holzman · Shih-Chieh Hsu · Sergo Jindariani · Suffian Khan · Benjamin Kreis · Brian Lee · Mia Liu · Vladimir Lončar · Jennifer Ngadiuba · Kevin Pedro · Brandon Perez · Maurizio Pierini · Dylan Rankin · Nhan Tran · Matthew Trahms · Aristeidis Tsaris · Colin Versteeg · Ted W. Way · Dustin Werran · Zhenbin Wu

Received: - / Accepted: -

Abstract Large-scale particle physics experiments face challenging demands for high-throughput comput-

J.D., B.H., S.J., B.K., M.L., K.P., N.T., and A.T. are supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. ing resources both now and in the future. New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms in particle physics

[https://arxiv.org/pdf/1904.08986.pdf]

2019

Apr

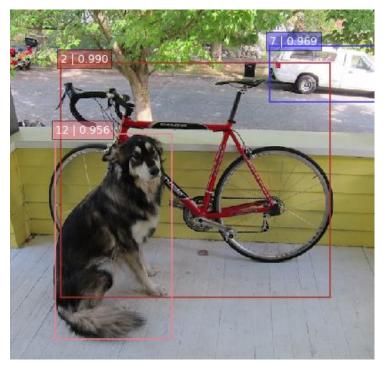
FPGA-Accelerated CNNs in Azure

5 well-known convolutional neural networks

- ResNet-152
- ResNet-50
- DenseNet-121
- VGG-16
- SSD-VGG 4

The system includes an SDK, web-based GUI, and tutorials [https://aka.ms/aml-real-time-ai]

This one localizes objects in the image



SSD-VGG For Empty Shelf Detection at the Edge

KROGER CORPORATE > INVESTOR RELATIONS > PRESS RELEASES > PRESS RELEASE

Kroger and Microsoft Partner to Redefine the Customer Experience and Introduce Digital Solutions for the Retail Industry

- America's largest grocery retailer and global technology company partnering to pilot two connected experience stores

- Companies will jointly bring to market Retail as a Service product for retailers and present the solution at NRF 2019: Retail's Big Show Company Release - 1/7/2019 6:30 AM ET

CINCINNATI and REDMOND, Wash., Jan. 7, 2019 /PRNewswire/ -- The Kroger Co. (NYSE: KR) and Microsoft Corp. (Nasdaq: MSFT) today announced a collaboration to redefine the customer experience using Kroger Technology products powered by Microsoft Azure, the retailer's preferred cloud platform for Retail as a Service (RaaS). Through this innovative partnership, Kroger will pilot a connected store experience and together with Microsoft, jointly market a commercial RaaS product to the industry.

[http://ir.kroger.com/file/Index?KeyFile=396285733]

Research Topics in DNN Inference Acceleration

- Number format
- Sparse Networks
- Dynamic Networks
- Overlay Sharing Between Models

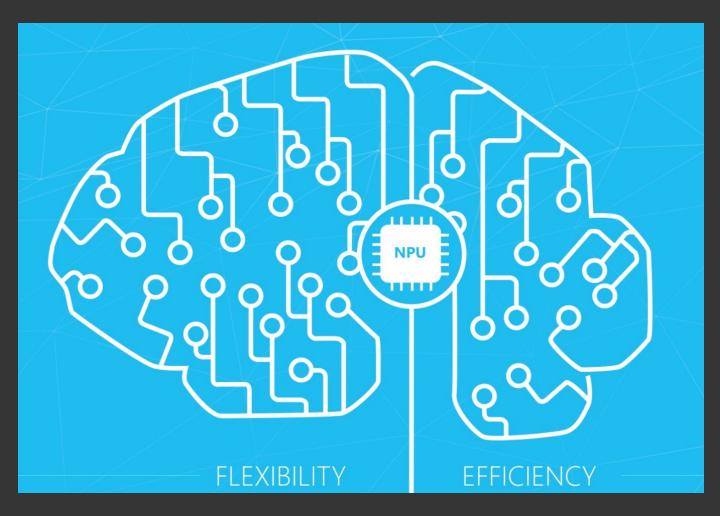
Takeaways

FPGAs are great for neural networks because we can specialize the overlay for the network and update the overlay in place

- Can switch any FPGA to a different configuration for load balancing
- Neural networks keep changing and FPGAs allow us to keep up

Brainwave is co-designed across hardware and software to take advantage of this flexibility to perform neural network inference at a massive scale for 1st party models on Bing and 3rd party models on Azure

Brainwave is still under development and we're scaling it to better FPGA hardware and bigger models



https://www.microsoft.com/en-us/research/project/project-brainwave/ https://www.microsoft.com/en-us/research/project/project-catapult/ https://aka.ms/aml-real-time-ai

